Source code for pyscf.agf2.uagf2_slow

# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Oliver J. Backhouse <olbackhouse@gmail.com>
#         George H. Booth <george.booth@kcl.ac.uk>
#

'''
Auxiliary second-order Green's function perturbation theory for
unrestricted references for arbitrary moment consistency
'''

import numpy as np
from pyscf import lib
from pyscf.lib import logger
from pyscf import __config__
from pyscf import ao2mo
from pyscf.agf2 import ragf2, uagf2, ragf2_slow
from pyscf.agf2 import aux_space as aux


[docs] def build_se_part(agf2, eri, gf_occ, gf_vir, os_factor=1.0, ss_factor=1.0): ''' Builds either the auxiliaries of the occupied self-energy, or virtual if :attr:`gf_occ` and :attr:`gf_vir` are swapped, for a single spin. Args: eri : _ChemistsERIs Electronic repulsion integrals gf_occ : tuple of GreensFunction Occupied Green's function for each spin gf_vir : tuple of GreensFunction Virtual Green's function for each spin Kwargs: os_factor : float Opposite-spin factor for spin-component-scaled (SCS) calculations. Default 1.0 ss_factor : float Same-spin factor for spin-component-scaled (SCS) calculations. Default 1.0 Returns: :class:`SelfEnergy` ''' cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(agf2.stdout, agf2.verbose) assert type(gf_occ[0]) is aux.GreensFunction assert type(gf_occ[1]) is aux.GreensFunction assert type(gf_vir[0]) is aux.GreensFunction assert type(gf_vir[1]) is aux.GreensFunction tol = agf2.weight_tol def _build_se_part_spin(spin=0): ''' Perform the build for a single spin spin = 0: alpha spin = 1: beta ''' if spin == 0: ab = slice(None) else: ab = slice(None, None, -1) nmoa, nmob = agf2.nmo[ab] gfo_a, gfo_b = gf_occ[ab] gfv_a, gfv_b = gf_vir[ab] noa, nob = gfo_a.naux, gfo_b.naux nva, nvb = gfv_a.naux, gfv_b.naux naux = nva*noa*(noa-1)//2 + nvb*noa*nob if not (agf2.frozen is None or agf2.frozen == 0): mask = uagf2.get_frozen_mask(agf2) nmoa -= np.sum(~mask[ab][0]) nmob -= np.sum(~mask[ab][1]) e = np.zeros((naux)) v = np.zeros((nmoa, naux)) falph = np.sqrt(ss_factor) fbeta = np.sqrt(os_factor) eja_a = lib.direct_sum('j,a->ja', gfo_a.energy, -gfv_a.energy) eja_b = lib.direct_sum('j,a->ja', gfo_b.energy, -gfv_b.energy) ca = (gf_occ[0].coupling, gf_occ[0].coupling, gf_vir[0].coupling) cb = (gf_occ[1].coupling, gf_occ[1].coupling, gf_vir[1].coupling) qeri = _make_qmo_eris_incore(agf2, eri, ca, cb, spin=spin) qeri_aa, qeri_ab = qeri p1 = 0 for i in range(noa): xija_aa = qeri_aa[:,i,:i].reshape(nmoa, -1) xjia_aa = qeri_aa[:,:i,i].reshape(nmoa, -1) xija_ab = qeri_ab[:,i].reshape(nmoa, -1) eija_aa = gfo_a.energy[i] + eja_a[:i] eija_ab = gfo_a.energy[i] + eja_b p0, p1 = p1, p1 + i*nva e[p0:p1] = eija_aa.ravel() v[:,p0:p1] = falph * (xija_aa - xjia_aa) p0, p1 = p1, p1 + nob*nvb e[p0:p1] = eija_ab.ravel() v[:,p0:p1] = fbeta * xija_ab se = aux.SelfEnergy(e, v, chempot=gfo_a.chempot) se.remove_uncoupled(tol=tol) if not (agf2.frozen is None or agf2.frozen == 0): coupling = np.zeros((agf2.nmo[ab][0], se.naux)) coupling[mask[ab][0]] = se.coupling se = aux.SelfEnergy(se.energy, coupling, chempot=gfo_a.chempot) return se se_a = _build_se_part_spin(0) cput0 = log.timer('se part (alpha)', *cput0) se_b = _build_se_part_spin(1) cput0 = log.timer('se part (beta)', *cput0) return (se_a, se_b)
[docs] class UAGF2(uagf2.UAGF2): ''' Unrestricted AGF2 with canonical HF reference for arbitrary moment consistency Attributes: nmom : tuple of int Compression level of the Green's function and self-energy, respectively verbose : int Print level. Default value equals to :class:`Mole.verbose` max_memory : float or int Allowed memory in MB. Default value equals to :class:`Mole.max_memory` conv_tol : float Convergence threshold for AGF2 energy. Default value is 1e-7 conv_tol_rdm1 : float Convergence threshold for first-order reduced density matrix. Default value is 1e-8. conv_tol_nelec : float Convergence threshold for the number of electrons. Default value is 1e-6. max_cycle : int Maximum number of AGF2 iterations. Default value is 50. max_cycle_outer : int Maximum number of outer Fock loop iterations. Default value is 20. max_cycle_inner : int Maximum number of inner Fock loop iterations. Default value is 50. weight_tol : float Threshold in spectral weight of auxiliaries to be considered zero. Default 1e-11. fock_diis_space : int DIIS space size for Fock loop iterations. Default value is 6. fock_diis_min_space : Minimum space of DIIS. Default value is 1. os_factor : float Opposite-spin factor for spin-component-scaled (SCS) calculations. Default 1.0 ss_factor : float Same-spin factor for spin-component-scaled (SCS) calculations. Default 1.0 damping : float Damping factor for the self-energy. Default value is 0.0 Saved results e_corr : float AGF2 correlation energy e_tot : float Total energy (HF + correlation) e_1b : float One-body part of :attr:`e_tot` e_2b : float Two-body part of :attr:`e_tot` e_init : float Initial correlation energy (truncated MP2) converged : bool Whether convergence was successful se : tuple of SelfEnergy Auxiliaries of the self-energy for each spin gf : tuple of GreensFunction Auxiliaries of the Green's function for each spin ''' _keys = {'nmom'} def __init__(self, mf, nmom=(None,0), frozen=None, mo_energy=None, mo_coeff=None, mo_occ=None): uagf2.UAGF2.__init__(self, mf, frozen=frozen, mo_energy=mo_energy, mo_coeff=mo_coeff, mo_occ=mo_occ) self.nmom = nmom build_se_part = build_se_part
[docs] def build_se(self, eri=None, gf=None, os_factor=None, ss_factor=None, se_prev=None): ''' Builds the auxiliaries of the self-energy. Args: eri : _ChemistsERIs Electronic repulsion integrals gf : tuple of GreensFunction Auxiliaries of the Green's function Kwargs: os_factor : float Opposite-spin factor for spin-component-scaled (SCS) calculations. Default 1.0 ss_factor : float Same-spin factor for spin-component-scaled (SCS) calculations. Default 1.0 se_prev : SelfEnergy Previous self-energy for damping. Default value is None Returns :class:`SelfEnergy` ''' if eri is None: eri = self.ao2mo() if gf is None: gf = self.gf if gf is None: gf = self.init_gf() focka = fockb = None if self.nmom[1] is not None: focka, fockb = self.get_fock(eri=eri, gf=gf) if os_factor is None: os_factor = self.os_factor if ss_factor is None: ss_factor = self.ss_factor facs = {'os_factor': os_factor, 'ss_factor': ss_factor} gf_occ = (gf[0].get_occupied(), gf[1].get_occupied()) gf_vir = (gf[0].get_virtual(), gf[1].get_virtual()) se_occ = self.build_se_part(eri, gf_occ, gf_vir, **facs) se_occ = (se_occ[0].compress(n=(None, self.nmom[1])), se_occ[1].compress(n=(None, self.nmom[1]))) se_vir = self.build_se_part(eri, gf_vir, gf_occ, **facs) se_vir = (se_vir[0].compress(n=(None, self.nmom[1])), se_vir[1].compress(n=(None, self.nmom[1]))) se_a = aux.combine(se_occ[0], se_vir[0]) se_a = se_a.compress(phys=focka, n=(self.nmom[0], None)) se_b = aux.combine(se_occ[1], se_vir[1]) se_b = se_b.compress(phys=fockb, n=(self.nmom[0], None)) if se_prev is not None and self.damping != 0.0: se_a_prev, se_b_prev = se_prev se_a.coupling *= np.sqrt(1.0-self.damping) se_b.coupling *= np.sqrt(1.0-self.damping) se_a_prev.coupling *= np.sqrt(self.damping) se_b_prev.coupling *= np.sqrt(self.damping) se_a = aux.combine(se_a, se_a_prev) se_b = aux.combine(se_b, se_b_prev) se_a = se_a.compress(n=(None,0)) se_b = se_b.compress(n=(None,0)) return (se_a, se_b)
[docs] def dump_flags(self, verbose=None): uagf2.UAGF2.dump_flags(self, verbose=verbose) logger.info(self, 'nmom = %s', repr(self.nmom)) return self
[docs] def run_diis(self, se, diis=None): return se
class _ChemistsERIs(uagf2._ChemistsERIs): pass _make_qmo_eris_incore = uagf2._make_qmo_eris_incore if __name__ == '__main__': from pyscf import gto, scf, mp mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='cc-pvdz', charge=-1, spin=1, verbose=3) uhf = scf.UHF(mol) uhf.conv_tol = 1e-11 uhf.run() agf2 = UAGF2(uhf) agf2.run() agf2 = uagf2.UAGF2(uhf) agf2.run()