#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Abdelrahman Ahmed <>
# Samragni Banerjee <samragnibanerjee4@gmail.com>
# James Serna <jamcar456@gmail.com>
# Terrence Stahl <>
# Alexander Sokolov <alexander.y.sokolov@gmail.com>
#
import numpy as np
[docs]
def get_ovvv_df(myadc, Lov, Lvv, p, chnk_size):
''' Returns approximate ovvv integrals used in restricted implementation'''
nvir = myadc._nvir
naux = myadc.with_df.get_naoaux()
Lvv = Lvv.reshape(naux,nvir*nvir)
nocc = Lov.size//(naux*nvir)
Lov = Lov.reshape(naux,nocc,nvir)
if chnk_size < nocc:
Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0)[p:p+chnk_size].reshape(-1,naux))
else:
Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0).reshape(-1,naux))
ovvv = np.dot(Lov_temp, Lvv)
ovvv = ovvv.reshape(-1, nvir, nvir, nvir)
return ovvv
[docs]
def get_ovvv_spin_df(myadc, Lov, Lvv, p, chnk_size):
''' Returns approximate ovvv integrals (different spin cases) used in unrestricted implementation '''
nocc = Lov.shape[1]
nvir_1 = Lov.shape[2]
nvir_2 = Lvv.shape[1]
naux = myadc.with_df.get_naoaux()
Lvv = Lvv.reshape(naux,nvir_2*nvir_2)
Lov = Lov.reshape(naux,nocc,nvir_1)
if chnk_size < nocc:
#Lov_temp = np.ascontiguousarray(Lov.T[:,p:p+chnk_size,:].reshape(-1,naux))
Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0)[p:p+chnk_size].reshape(-1,naux))
else:
Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0).reshape(-1,naux))
ovvv = np.dot(Lov_temp, Lvv)
ovvv = ovvv.reshape(-1, nvir_1, nvir_2, nvir_2)
#vvvv = np.ascontiguousarray(vvvv.transpose(0,2,1,3)).reshape(-1, nvir, nvir * nvir)
return ovvv
[docs]
def get_vvvv_df(myadc, Lvv, p, chnk_size):
''' Returns approximate vvvv integrals used in restricted implementation'''
nvir = myadc._nvir
naux = myadc.with_df.get_naoaux()
Lvv = Lvv.reshape(naux,nvir,nvir)
if chnk_size < nvir:
Lvv_temp = np.ascontiguousarray(Lvv.T[p:p+chnk_size].reshape(-1,naux))
else:
Lvv_temp = np.ascontiguousarray(Lvv.T.reshape(-1,naux))
Lvv = Lvv.reshape(naux,nvir*nvir)
vvvv = np.dot(Lvv_temp, Lvv)
vvvv = vvvv.reshape(-1, nvir, nvir, nvir)
vvvv = vvvv.transpose(0,2,1,3).reshape(-1, nvir, nvir, nvir)
vvvv = np.ascontiguousarray(vvvv)
return vvvv
[docs]
def get_vvvv_antisym_df(myadc, Lvv, p, chnk_size, pack = True):
''' Returns approximate antisymmetrized vvvv integrals (alpha/beta spin) used in unrestricted implementation'''
naux = myadc.with_df.get_naoaux()
nvir = Lvv.shape[1]
ind_vv_g = np.tril_indices(nvir, k=-1)
if chnk_size < nvir:
Lvv_temp = np.ascontiguousarray(Lvv.T[p:p+chnk_size].reshape(-1,naux))
else:
Lvv_temp = np.ascontiguousarray(Lvv.T.reshape(-1,naux))
Lvv = Lvv.reshape(naux,nvir*nvir)
vvvv = np.dot(Lvv_temp, Lvv)
vvvv = vvvv.reshape(-1, nvir, nvir, nvir)
vvvv = vvvv.transpose(0,2,1,3)
vvvv -= vvvv.transpose(0,1,3,2)
if pack:
vvvv = np.ascontiguousarray(vvvv[:, :, ind_vv_g[0], ind_vv_g[1]])
else:
vvvv = np.ascontiguousarray(vvvv)
return vvvv
[docs]
def get_vVvV_df(myadc, Lvv, LVV, p, chnk_size):
''' Returns approximate vvvv integrals (mixed spin) used in unrestricted implementation'''
naux = myadc.with_df.get_naoaux()
nvir_1 = Lvv.shape[1]
nvir_2 = LVV.shape[1]
if chnk_size < nvir_1:
Lvv_temp = np.ascontiguousarray(Lvv.T[p:p+chnk_size].reshape(-1,naux))
else:
Lvv_temp = np.ascontiguousarray(Lvv.T.reshape(-1,naux))
LVV = LVV.reshape(naux,nvir_2*nvir_2)
vvvv = np.dot(Lvv_temp, LVV)
vvvv = vvvv.reshape(-1,nvir_1,nvir_2,nvir_2)
vvvv = vvvv.transpose(0,2,1,3)
vvvv = np.ascontiguousarray(vvvv)
return vvvv